
A
ccording to Martin Fowler, “Refactor-
ing is the process of changing a soft-
ware system in such a way that it does
not alter the external behavior of the

code yet improves its internal structure. It
is a disciplined way to clean up code that
minimizes the chances of introducing bugs.”
(Refactoring: Improving the Design of Ex-
isting Code, Addison-Wesley, 2000). Clear-
ly, refactoring is something all developers
do, even when you hand-code and don’t
realize you’re actually doing it. Despite its
association with Extreme Programming (XP)
and other radical coding methods, refac-
toring is a basic process.

When you edit code to make it more
rational, portable, modular, or readable,
much of that process almost always con-
sists of applying refactorings— systemat-
ic changes that satisfy Fowler’s definition.
Refactoring can be as straightforward as
renaming a method or variable, then up-
dating all related references across the en-
tire project so it doesn’t break the build.
Even in simple examples, few of us
would refactor completely by hand —

we’re more likely to use automated
search-and-replace tools, whether in GUI
dialogs or via grep and sed.

Unfortunately, basic search-and-replace
tools cannot ensure consistent modifica-
tions, since they lack the context-sensitive
logic needed to determine the function of
a particular bit of code. This means that
you must verify all changes by hand. Even
with simple refactorings, such tedium can
discourage refactoring. Many developers
have bemoaned the state of a large pro-
ject as poorly structured, badly imple-
mented, unscalable, and kludged— but
still too complex to fix within the current
budget or timeframe.

Refactoring becomes more powerful if
you combine individual refactorings into a
series. Together, they can help you ac-
complish complicated tasks that, at first
glance, may seem impossible to automate
and nearly as difficult to do by hand. In this
article, we show how refactoring— treated
as a process integral to development itself—
is as frequently needed and crucial to pro-
jects as the initial coding itself.

When Refactoring Is Needed
Refactoring can dramatically increase de-
velopment efficiency during four main
stages of software development:

1. Architectural/design decisions and de-
sign changes.

2. Reusing existing code.
3. Global changes that entail repetitive

tasks, such as switching to newer APIs
or eliminating deprecated APIs.

4. Everyday coding.

To illustrate, we use IntelliJ IDEA 3.0,
a tool our company (Jetbrains Inc.) pro-
duces. Other tools may use different com-
mands and results may vary. However,

what’s important is the sequence of refac-
torings.

Refactoring Scenarios
Imagine a generic client-server application
with its server portion originally designed
on a single-threaded model. At some point,
the number of client users grows rapidly
and long delays occur before requests get
handled. Switching to a multithreaded serv-
er model would solve the problem— but
the original code made no provision for
the required synchronized locks.

In Listing One, a Singleton server ob-
ject UserManagement provides access to
an AccessRightsTable, which allows read
access to user rights. Listing One is the
initial state of the UserManagement class,
while Listing Two is the initial state of the
AccessRightsTable class. The Client class,
among others, has two methods that re-
fer to UserManagement’s and Access-
RightsTable’s methods; see Listing Three,
the initial state of the Client class.

To switch to a multithreaded model, you
need both synchronized (safe but slow)
and nonsynchronized (fast but unsafe) ver-
sions of the class AccessRightsTable. At the
same time, you need to ensure copyTable—
returned by the createImmutableCopy()
method— remains immutable.

You can accomplish this complex task
through a series of refactorings and smart
edits— just apply the following refactor-
ings in order, which will change the ap-
plication design without affecting the con-
sistency of the existing code.

Step 1. Open the AccessRights Table.java
file and choose Refactor|Extract Interface
(Figure 1). Specify AbstractAccessRights-
Table as the name for the new interface
and select all methods from the list to be
declared in it. The program creates a new
interface with the methods declared, then

Radical
Refactoring

Let refactoring tools do
the walking for you

Eugene Belyaev, Maxim Shafirov,
and Ann Oreshnikova

Eugene is president and CTO of JetBrains,
Maxim is a senior developer for the IntelliJ
IDEA Java IDE development project, and
Ann is head of the Documentation and
Support Department. They can be con-
tacted at http://www.jetbrains.com/.

26 Dr. Dobb’s Journal, January 2004 http://www.ddj.com

automatically changes usages of Access-
RightsTable to AbstractAccessRightsTable
everywhere relevant in your project.

Step 2. Using Alt+Insert (or the New
popup menu item) in Project view, create
the new classes MutableAccessRightsTable
and ImmutableAccessRightsTable to im-
plement AbstractAccessRightsTable. In both

classes, declare the myDelegate field of
type AbstractAccessRightsTable and call
the Code|Delegate Methods main menu
item. Choose the myDelegate field and se-
lect all methods from the list to be dele-
gated to this field.

Step 3. In MutableAccessRightsTable, go
to each generated method body in sequence,
highlight it, and press Ctrl+Alt+T to call the

Surround With lookup list. Then select syn-
chronized{} to automatically enclose the
method body in this block (Figure 2).

Step 4. In ImmutableAccessRightsTable,
go to the methods that allow write access
to the object and type throw new Unsup-
portedOperationException("<Your exception
text here>") instead of the method body.

Step 5. Search for use of the Access-
RightsTable constructor, using Alt+F7, and
decide where its mutable or immutable
version should be used. In this case, you
need the mutable one in the UserMan-
agement Singleton class’s constructor, and
the immutable wrapper in the return state-
ment of the createImmutableCopy()
method of the Client class.

Refactoring tools make this process
easy— these steps took us only seven
minutes. The refactorings produce Listings
Four through Six and guarantee synchro-
nized access to AccessRightsTable as well
as the immutability of the copy created
for read-only use. (By contrast, see the
accompanying text box entitled “Doing It
the Hard Way” for an equivalent solution
done by hand.)

Reuse of Existing Code
Most of us have needed to reuse code,
whether our own or someone else’s. We
now present a real-world example that il-
lustrates how refactoring makes code reuse
much easier.

Imagine in your application a dialog
window with two interacting components.
It might be a tree-like list of options and
a preview pane that is automatically mod-
ified at runtime to reflect the options se-
lected or deselected. The dialog was writ-
ten long ago by someone else. Now you
need to create a similar dialog to work
with alternative data. Your first approach
might be to create a copy of the existing
class containing the requisite dialog code,
then simply make multiple corrections so
that the new code reflects your new re-
quirements. This may work, but the ap-
proach makes no provision for you (or
your colleagues) to integrate another, sim-
ilar dialog or multiple dialogs in the future.

Refactoring provides a better solution by
generalizing the design for all such dialogs,
while requiring only minimal corrections
on your part to perform manually.

1. Open the existing class for the dialog.
2. Find the code block that creates the

pane with the tree-like list of options
and perform the Extract Method refac-
toring on it.

3. Do the same for the code block re-
sponsible for the preview pane.

4. Call the Extract Superclass refactoring,
select all members to be moved to the
superclass, and mark the two newly
created methods to be declared abstract.

(continued from page 26)

28 Dr. Dobb’s Journal, January 2004 http://www.ddj.com

Figure 1: Use the Extract Interface dialog in IntelliJ IDEA to create an abstracted
AccessRightsTable class.

Figure 2: Use the Surround With lookup list to enclose the bodies of the
generated methods with synchronized{} blocks.

5. Create a new class for your new dialog,
extending the newly created superclass.

Now you have an identical dialog and
only need to define the two methods that
accept your data. Better yet, in future uses,
the superclass becomes a base for creat-
ing additional dialogs of the same type.

We often use such refactorings to pro-
duce GUI modules. This keeps the UI con-
sistent and guards against possible bugs
that can creep into the code when using
a copy/paste approach.

Boring and Repetitive Tasks
A few years ago, like many other devel-
opers, we frequently utilized the class
java.util.Vector in our Java applications.
In large applications, such as our IntelliJ
IDEA Java IDE, this class could be used
in thousands of places. The main prob-
lem was the synchronized behavior of this
class, but there was no way to avoid us-
ing it until the nonsynchronized ArrayList
class appeared in the new Java SDK API,
as a substitute for java.util.Vector. This
new class improved application perfor-
mance, so we decided to switch to this
newer API. Doing so manually would take
hundreds of man hours, but there was no
obvious way to automate the task. After
analyzing several approaches, however,
we found we could use our own tool’s
refactoring support to make sequenced,
automated changes and save an incalcu-
lable amount of time and money.

Here is how we used refactoring to switch
to a newer API (or eliminate a deprecated
API). Listing Seven uses java.util.Vector and
its methods. To switch to the ArrayList, we
only needed to:

1. Create a new class Vector in one of the
project’s packages and make it extend
ArrayList.

2. Define a method lacking in ArrayList
but available in java.util.Vector; see List-
ing Eight. (For similar tasks, you need
to redefine all differing methods.)

3. Migrate the project globally from
java.util.Vector to your newly creat-
ed Vector, calling the migration utility
with the Tools|Migrate… command
(Figure 3).

4. In the new Vector class, call the Refac-
tor Inline… command for each method
(in the example, elementAt()). Listing
Nine shows the resulting changes in the
SampleClass.

5. Finally, migrate the project globally from
Vector to java.util.ArrayList.

Bingo! We switched from java.util.Vec-
tor to java.util.ArrayList with no remain-
ing inconsistency. We could then easily
delete your custom Vector class as un-
necessary (Listing Ten).

Refactoring as a Third Hand
The previous scenario illustrated how
refactoring serves as an extra mechanism
that lets you alter and improve applica-
tion design. If you have access to ad-
vanced refactoring tools, you quickly find
that individual refactorings are applica-
ble to a wider spectrum of common de-
velopment procedures. No one on our
team could imagine their everyday cod-
ing tasks without the use of sophisticat-
ed refactoring tools. In the next scenario,
we show you the potential of some par-
ticular refactoring procedures in every-
day production to help develop stream-
lined and efficient code.

The Sample class (the fragment be-
tween delimiters; Listing Eleven) includes
a block of code that selects users with

read-access rights. Say you want to cre-
ate a new method that selects users with
particular rights. In IntelliJ IDEA, you se-
lect the fragment between delimiters and
press Ctrl+Alt+M, or call the Refactor|Ex-
tract Method command. You then speci-
fy a new method name (getUsersWithRight,
for example), press OK, and it becomes
Listing Twelve.

For a truly generic new method, avoid
using the constant variable (READ_AC-
CESS), and instead pass the value as a pa-
rameter. To do so, select the field (within
the if condition; Listing Twelve) and press
Ctrl+Alt+P, or call the Refactor|Introduce
Parameter command. We specify the new
parameter name as pRight and the field is
now passed as a parameter (the fragment
between delimiters; Listing Thirteen).

http://www.ddj.com Dr. Dobb’s Journal, January 2004 29

Listing One
public class UserManagement {

private static UserManagement ourSingleInstance;
private AccessRightsTable myRightsTable;
private UserManagement() {

myRightsTable = new AccessRightsTable();
}
public static UserManagement getInstance() {

if (ourSingleInstance == null) {
ourSingleInstance = new UserManagement();

}
return ourSingleInstance;

}
public AccessRightsTable getRightsTable() {

return myRightsTable;
}

}

Listing Two
public class AccessRightsTable {

private Map myUserToRightsSet;
public AccessRigtsTable() {

myUserToRightsSet = newHashMap();
}
public void grantRight(User user, Right right){

Set rightsSet = (Set) myUserToRightsSet.get(user);
if(rightsSet == null) {

rightsSet = new HashSet ();
myUserToRightsSet.put(user, rightsSet);

}
rightsSet.add(right);

}
public void revokeRight(User user, Right right) {...}
public Boolean checkRight(User user, Right right) {...}
public User[] getAllUsers() {...}
public Right[] getUserRights(User user) {...}

}

Listing Three
public class Client {

/** This method revokes CREATE_NEW_ACCOUNT right from all users
* currently registered in rights table.
*/
public static void revokeCreateNewAccount() {

AccessRightsTable rightsTable =

The two variables of different scopes
having the same name (rightfulUsers) re-
duce the code’s readability and, in larger
projects, we would probably rename one
of these variables (Refactor|Rename…). In
this scenario, you do better to just inline
the variable used in arrangeUsersByRight()
(by calling the Refactor|Inline… com-
mand), so it becomes:

myUsersWithRights =
getUsersWithRight{READ_ACCESS);

Conclusion
Automated refactoring tools are incredi-
bly powerful and deserve a place in ev-
ery developer’s arsenal. For complex code
modification on large source trees, auto-
mated refactoring is especially useful.
However, by staying aware of both the
process of refactoring and the tools that
make that process easier, refactoring’s use-
fulness can extend to all stages of project
development. Used properly, refactoring
makes even the most routine development
processes much more efficient.

DDJ

30 Dr. Dobb’s Journal, January 2004 http://www.ddj.com

Figure 3: Migrating from java.util.Vector to com.mycompany.product.Vector.

While the refactoring sequence in the
first scenario produces an extremely
efficient redesign of existing code,

the operations themselves are highly repet-
itive. Unless you have an unending supply
of unpaid, volunteer programmers, you will
want to use automation tools, such as a
refactoring-capable IDE. In contrast, let’s
look at the painful steps needed to perform
the same necessary operations manually:

Stage 1. Manually create an interface
to be implemented by the AccessRights-
Table, as well as by the manually created
MutableAccessRightsTable and Immutable-
AccessRightsTable. Manually create all
methods in the two new classes and make

them use the delegate field in the method
body. Manually wrap methods in Muta-
bleAccessRightsTable with the synchro-
nized{} block. After having spent, say, half
an hour or more at that, you would take
a coffee break (another 10–15 minutes)
and come back with a clear mind to tack-
le the second stage— involving work so
boring, you do not even want to think
about it.

Stage 2. Find all usage of the Access-
RightsTable class in your project (field types,
variable types, parameter types, method re-
turn types). For each usage, decide whether
to manually switch to the AbstractAccess-
RightsTable interface instead of the class.

Find all usages of the AccessRightsTable
constructor in your project. Analyze the
contextual role of the variable or field hold-
ing an instance of AccessRightsTable and
try to foresee possible future usages of each
particular instance, to either leave it as-is
or wrap it up with the MutableAccess-
RightsTable or ImmutableAccessRightsTable
constructor calls.

Depending on the size of your project,
these steps might take you anywhere from
one to dozens of man hours to complete.
By contrast, the right automation tool gets
it done in seven minutes.

—E.B., M.S., and A.O.

Doing It the Hard Way

UserManagement.getInstance().getRightsTable();
User[] allUsers = rightsTable.getAllUsers();
for (int i = 0; i < allUsers.length; i++) {

User user = allUsers[i];
rightsTable.revokeRight(user, Right.CREATE_NEW_ACCOUNT);

}
}
/** This method creates new AccessRightsTable copy. This table is not
* intended to be modified. @return new copy table. NOT TO BE MODIFIED!
*/
public static AccessRightsTable createImmutableCopy() {

AccessRightsTable rightsTable =
UserManagement.getInstance().getRightsTable();

AccessRightsTable copyTable = new AccessRightsTable();
User[] allUsers = rightsTable.getAllUsers();
for (int i = 0; i < allUsers.length; i++) {

User user = allUsers[i];
Right[] rights = rightsTable.getUserRights(user);
for (int j = 0; j < rights.length; j++) {

Right right = rights[j];
copyTable.grantRight(user, right);

}
}

return copyTable;
}

}

Listing Four
public class UserManagement {

private static UserManagement ourSingleInstance;
private AbstractAccessRightsTable myRightsTable;
private UserManagement() {

myRightsTable = new MutableAccessRightsTable(new AccessRightsTable());
}
public static UserManagement getInstance() {

if(ourSingleInstance == null) {
ourSingleInstance = new UserManagement();

}
return ourSingleInstance;

}
public AbstractAccessRightsTable getRightsTable() {

return myRightsTable;
}

}

Listing Five
public class MutableAccessRightsTable implements AbstractAccessRightsTable {

private AbstractAccessRightsTable myDelegate;
public MutableAccessRightsTable(AbstractAccessRightsTable pDelegate) {

myDelegate = pDelegate;
}
public void grantRight(User user, Right right) {

synchronized (this) {
myDelegate.grantRight(user, right);

}
}
public void revokeRight(User user, Right right) {

synchronized (this) {
myDelegate.revokeRight(user, right);

}
}

}

Listing Six
public class Client {

public static void revokeCreateNewAccount() {...}
public static AbstractAccessRightsTable createImmutableCopy() {

AbstractAccessRightsTable rightsTable =
UserManagement.getInstance().getRightsTable();

AbstractAccessRightsTable copyTable = new AccessRightsTable();
User[] allUsers = rightsTable.getAllUsers();
for (int i = 0; i < allUsers.length; i++) {

User user = allUsers[i];
Right[] rights = rightsTable.getUserRights(user);
for (int j = 0; j < rights.length; j++) {

Right right = rights[j];
copyTable.grantRight(user, right);

}
}
return new ImmutableAccessRightsTable(copyTable);

}
}

Listing Seven
public class SampleClass {

public Vector createSampleVector() {
Vector vector = new Vector();
vector.add(“ItemOne”);
vector.add(“ItemTwo”);
vector.add(“ItemThree”);
return vector;

}
public void useSampleVector(Vector vector) {

for (int i = 0; i < vector.size(); i++) {
String s = (String) vector.elementAt(i);
System.out.println(“s = “ + s);

}
}

}

Listing Eight
public class Vector extends ArrayList {

public Object elementAt (int index) {
return get(index);

}
}

Listing Nine
public class SampleClass {

public Vector createSampleVector() {
Vector vector = new Vector();
vector.add(“ItemOne”);
vector.add(“ItemTwo”);
vector.add(“ItemThree”);
return vector;

}
public void useSampleVector(Vector vector) {

for (int i = 0; i < vector.size(); i++) {
String s = (String) vector.get(i);
System.out.println(“s = “ + s);

}
}

}

Listing Ten
public class SampleClass {

public ArrayList createSampleVector() {
ArrayList vector = new ArrayList();
vector.add(“ItemOne”);
vector.add(“ItemTwo”);
vector.add(“ItemThree”);
return vector;

}
public void useSampleVector(ArrayList vector) {

for (int i = 0; i < vector.size(); i++) {
String s = (String) vector.get(i);
System.out.println(“s = “ + s);

}
}

}

Listing Eleven
public class Sample {

static final int READ_ACCESS = 1;
static final int WRITE = 2;
ArrayList myUsers;
ArrayList myUsersWithRights;
public void arrangeUsersByRight() {

... <some code here> ...
ArrayList rightfulUsers = new ArrayList();
for (int i = 0; i < myUsers.size(); i++) {

User user = (User) myUsers.get(i);
if ((user.myAccessRight & READ_ACCESS) != 0) {

rightfulUsers.add(user);
}

}
myUsersWithRights = rightfulUsers;
... <some code here> ...

}
}

Listing Twelve
public void arrangeUsersByRight() {

... <some code here> ...
ArrayList rightfulUsers = getUsersWithRight();
myUsersWithRights = rightfulUsers;
... <some code here> ...

}
private ArrayList getUsersWithRight() {

ArrayList rightfulUsers = new ArrayList();
for (int i=0; i < myUsers.size(); i++) {

User user = (User) myUsers.get(i);
if ((user.myAccessRight & READ_ACCESS) != 0) {

rightfulUsers.add(user);
}

}
return rightfulUsers;

}

Listing Thirteen
public void arrangeUsersByRight() {

...<some code here>...
ArrayList rightfulUsers = getUsersWithRight(READ_ACCESS);
myUsersWithRights = rightfulUsers;
...<some code here>...

}
private ArrayList getUsersWithRight(int pRight) {

ArrayList rightfulUsers = new ArrayList();
for (int i = 0; i < myUsers.size(); i++) {

User user = (User) myUsers.get(i);
if ((user.myAccessRight & pRight) !=0) {

rightfulUsers.add(user);
}

}
return rightfulUsers;

}

DDJ

http://www.ddj.com Dr. Dobb’s Journal, January 2004 31

